A New Proof of Inequalities for Gauss Compound Mean
نویسنده
چکیده
In this short note, by structuring an auxiliary function and using known identity and inequalities, a new, elementary and succinct proof of inequalities for Gauss compound mean is given. Lastly, two open problems are posed. Mathematics Subject Classification: 26D07, 26E60
منابع مشابه
New integral inequalities for $s$-preinvex functions
In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.
متن کاملNew Integral Inequalities Through the phi-Preinvexity
Abstract. In this note, we give some estimates of the generalized quadrature formula of Gauss-Jacobi type for phi-preinvex functions.
متن کاملA hybrid mean value involving a new Gauss sums and Dedekind sums
In this paper, we introduce a new sum analogous to Gauss sum, then we use the properties of the classical Gauss sums and analytic method to study the hybrid mean value problem involving this new sums and Dedekind sums, and give an interesting identity for it.
متن کاملA Brief Determination of Certain Class of Power Semicircle Distribution
In this paper, we give a new and direct proof for the recently proved conjecture raised in Soltani and Roozegar (2012). The conjecture can be proved in a few lines via the integral representation of the Gauss-hypergeometric function unlike the long proof in Roozegar and Soltani (2013).
متن کاملInequalities for Jacobian elliptic functions and Gauss lemniscate functions
A new proof of inequalities involving Jacobian elliptic functions and their inverse functions are obtained. Similar results for the Gauss lemniscate functions are also established. Upper bounds for the inverse Jacobian elliptic functions and for the Gauss arc lemniscate functions are derived. 2012 Elsevier Inc. All rights reserved.
متن کامل